浅谈电动汽车中逆变器技术和市场分析

发布时间: 2024-02-21 12:54:37 人气:1 来源:球王会官方入口

  逆变器在电动汽车和混动汽车中发挥着及其重要的作用。其基本功能是将车载电池组提供的直流电转换为三相交流电,用于汽车的电机。此外,在再生制动期间,逆变器将交流电转换为直流电,为电池组充电。

  拥有一个高效且重量轻的逆变器能延续续航里程,并实现更快速的电动汽车充电。它还能减小电池组的尺寸,从而节省电动汽车的成本。逆变器有一个称为功率模块的组件,带有一个半导体开关装置,通过打开和关闭以改变电流方向来产生交流电。逆变器对电动汽车至关重要。

  对开关装置技术的选择在很大程度上取决于电压架构,因此,了解这在某种程度上预示着什么以及它将怎么样影响对很多类型逆变器的需求非常重要。

  传统内燃发动机驱动的轻型乘用车使用12V或偶尔使用24V的系统为车内电路(如电子控制器、车灯和信息娱乐系统)供电。为了更好的提高效率和排放控制,48V架构系统被开发出来。

  使用电力驱动,其中电机/发电机可以辅助内燃机或直接为车桥供电。某些辅助系统——如空调、强制感应和起停功能——能够最终靠48V的辅助电池组运行,从而大幅度降低油耗。凭借发电能力来支持车辆的轻混功能,48V系统将在未来几年内成为混动汽车中的常见配置。

  全电动和全混混合动力总成采用高压架构,电压通常在300V至600V之间,在某些情况下甚至更高。电动汽车驱动电机通常在高电压下运行,以提取足够的电力,以此来实现与燃油驱动汽车相当或更优越的性能和驾驶性能。

  电驱动系统的系统电压分为三个等级——最高48V为低压;48V以上至450V为中压;450V以上至1,000V为高压。

  就所使用的逆变器而言,三个电压等级之间预计将有很大差异。在低压类别中,硅(Si)金属氧化物半导体场效应晶体管(MOSFET)是最常用的逆变器类型,而绝缘栅双极晶体管(IGBT)逆变器最常用于中高电压等级。尽管在本预测所覆盖的年份里,低压和中压类别的这种层次结构不会改变,但在高压类别中,SiC逆变器将成为最常用的逆变器。

  目前,IGBT逆变器在高压级逆变器中的份额接近90%,剩余10%为SiC逆变器。然而,到2034年,这样的一种情况将出现重大变化,SiC逆变器预计将占55%的市场占有率,而IGBT逆变器的份额预计将下降到38%。此外,GaN逆变器预计将占高压逆变器类别的7%。

  在这十年的下半个五年里,汽车行业中GaN逆变器的使用也可能加快。然而,这项技术仍处于起步阶段,很难预测它将怎么样发展。根据S&P Global Mobility的预测,GaN逆变器预计将占高压逆变器类别(370万块)的7%。

  电动汽车中使用了四种类型的驱动逆变器,取决于半导体开关技术。本部分着眼于这些技术如何相互叠加发挥作用,以及电动汽车行业怎么样去使用这些技术。

  Si MOSFET逆变器大多数都用在轻混,但也用于低压混动。MOSFET具有三个端子,即源极、漏极和栅极端子。MOSFET在高达100V的低压应用和20千瓦的峰值功率中效率更高。这是因为较小的导通损耗和低压降,使其能够在高频下工作。然而,随着系统电压增加,高导通损耗使Si MOSFET逆变器的效率降低。随着汽车制造商将产品阵容转移到更高水平的电气化,如全混混动汽车和插电式混动汽车以及BEV,Si MOSFET将失去其市场份额。

  根据S&P Global Mobility预测,到2027年,对Si MOSFET逆变器的需求将增长,但与IGBT或SiC逆变器相比,上涨的速度较低。2027年之后,对Si MOSFET的需求将开始下降。对Si MOSFET的需求将从2027年的1,410万片下降到2034年的820万片,降幅为7.4%。同期内,轻混动力汽车的产量预计也将从1,250万辆下降至545万辆。

  IGBT从本质上结合了双极晶体管和MOSFET的物理特性,使其具有MOSFET的更高载流能力和高开关频率。IGBT是一种基于三相硅的开关器件,但IGBT没有源极、漏极和栅极端子,而是具有发射极、集电极和栅极端子。事实上,IGBT在全混混动汽车和BEV中的效率要高得多,因为IGBT的额定电压超过1,200V,而MOSFET的电压为600V。该开关器件最适合为35千瓦至85千瓦的驱动电机供电,使其成为入门到中级BEV的理想选择。与Si MOSFET相比,IGBT的开关频率较低,但对静电放电的耐受性较高。IGBT还具有在较高电压下较低的传导损耗。

  截至2023年,对IGBT逆变器的需求达到3,050万台。2023年,对IGBT逆变器的总需求中,63%来自全混混动汽车,36.5%来自BEV。

  到2029年,对IGBT逆变器的需求将继续增长,达到5,890万台。2029年之后,需求将下降,减少至5,380万台。同时,对SiC逆变器的需求也将增长。

  目前,IGBT逆变器在混动汽车中的应用最大,但到2030年代末,随着对纯电动汽车的需求增加,BEV将成为IGBT逆变器的主要细分市场。IGBT逆变器是目前BEV细分市场的主心骨,2023年占BEV所用逆变器份额的67%,但随着SiC技术走向成熟且更加容易获得,IGBT的份额将在未来10年内一下子就下降,并且在下一个10年,IGBT在BEV细分市场的第一把交椅将被SiC取代。

  GaN是汽车厂商和逆变器制造商正在研究的另一种宽禁带半导体技术。GaN相对于SiC的主要优势之一是禁带宽度为3.4伏特(eV),高于SiC的3eV和Si的1.1eV。GaN的固有特性实现了更快的开关能力,进一步提升了逆变器的性能。在某些电压架构下,GaN的效率甚至高于SiC。GaN仍是一项相对较新的技术,其在电动汽车逆变器中的应用仍在研究中。它们尚未用于市售电动汽车,预计将在晚些时候上市。GaN技术在高压应用(约400V汽车架构)的适用性方面仍面临一些技术限制,要解决这些限制,才能成为主流技术。随着系统电压增加,GaN芯片的尺寸也需要变大来维持效率。在空间存在限制的电动汽车等应用中,这不是理想的情况。考虑到GaN的最佳工作电压范围,它将很可能被视为Si的替代品,而非SiC。

  到2034年,轻型汽车细分市场对GaN逆变器的需求将接近550万台。BEV将成为GaN逆变器的最大用户,到2034年其份额将接近99.5%,全混混动汽车将占0.5%。到2034年,GaN逆变器在整个逆变器市场中的份额将达到4%。

  至于特斯拉,对GaN逆变器的需求将从2027年开始,达到32万辆。到2034年,特斯拉和大众合计将占全球GaN逆变器需求总量的近80%。

  在2021年,汽车动力总成技术公司hofer powertrain与高压汽车应用氮化镓(GaN)解决方案供应商VisICTechnologies Ltd.宣布建立合作伙伴关系,共同开发用于800V电动汽车的GaN逆变器。2023年2月,VisICTechnologies成功地为一家主流汽车厂商展示了其基于直接驱动D模式氮化镓(D³GaN)半导体技术的三相GaN逆变器,并配备了一台PMSM电机。该公司称,其三相GaN逆变器系统原型将在2023年第二季度末前在不一样的客户地点进行测试。

  2022年9月,Marelli宣布与都灵理工大学(Politecnico di Torino)电力电子创新中心(PEIC)合作,设计一款基于GaN技术的多电平900V大功率逆变器原型,用于电动汽车。

  高效的逆变器能延续电动汽车的续航能力和提高性能,而不会显着增加汽车的重量或成本。虽然IGBT拥有非常良好的效率,但由于其所基于的硅材料,它也有缺点。未解决这个问题,汽车行业正日益转向碳化硅,这是一种宽禁带(WBG)材料,可为逆变器提供更好的特性。与SIIGBT相比,SiC具有更高的电场击穿能力、更好的热导率、在更高的温度工作,以及更高的开关频率(由于电子禁带宽),因而开关和传导损耗更低。SiC更好的热导率使逆变器能够更快、更高效地散热。这允许使用更小的和具有成本效益的冷却解决方案。然而,SiC逆变器依然相对昂贵,更受高端电动汽车的青睐。

  截至2023年,对SiC逆变器的需求为550万台,占13%的市场占有率。根据S&P Global Mobility的预测,到2034年,SiC逆变器的需求将以22.8%的复合年增长率增长,达到5,250万台。到2034年,BEV将占SiC逆变器需求的很大一部分,占SiC逆变器需求总量的84.5%,全混混动汽车将占剩余的15%。到2034年,SiC逆变器将占逆变器总需求的44%。

  汽车制造商寻求提高汽车效率的方法之一是提高零部件的集成度。汽车中更高的集成度能提高空间利用率,减少系统损耗和提供更好的热性能。

  截至2023年,电机+逆变器的集成是BEV和轻混汽车中使用最广泛的配置。在一辆电动化轻型汽车中,约49%的逆变器采用这种配置。紧随其后的是逆变器+DC-DC配置,占有31%的市场占有率。逆变器+DC-DC是全混混动中最常使用的配置。

  在可预见的将来,电机+逆变器预计将仍然是首选配置。实际上,到2034年,这种配置的份额将增加到61%。另一方面,逆变器+DC-DC集成配置的份额将下降,同期内占比将跌至19%。

  目前,作为独立装置配备的逆变器占电动汽车逆变器总安装量的19%。到2034年,这一比例预计也将保持在18%的水平。

  当今市场上的大多数电动汽车均基于400V系统架构,但鉴于要解决有关续航能力的焦虑、延长续航里程并缩短充电时间,在不久的将来,很多电动汽车将基于800V架构。目前,只有奥迪、保时捷、现代和起亚拥有基于800V架构的电动汽车,而Lucid Motor的Air基于900V+架构。

  充电速度更快,从而显著缩短充电时间(几乎高达50%)——这能减小电池组的尺寸,以此来降低车辆的总体成本

  随着系统电压翻倍(即从400V到800V),电流量减少,从而允许使用更细、更轻的电线和电缆

  改用800V架构将需要宽禁带半导体,如SiC和GaN。与Si相比,SiC有很多优点,比如对温度不那么敏感,提供更高效的开关,可以应对高达200℃的结温。

  特斯拉和比亚迪凭借对SiC逆变器的需求最大,在竞争中处于领头羊。随着BEV需求上升,叠加向800V架构的转变,对SiC逆变器的需求也将上升。展望未来,到2034年,丰田、大众、雷诺-日产-三菱、Stellantis、宝马、梅赛德斯-奔驰、吉利和特斯拉将引领对SiC逆变器的需求。对于除丰田以外的所有汽车厂商而言,几乎所有的SiC逆变器需求将来自其BEV产品线%的SiC逆变器需求将来自全混混动汽车,剩下40%来自BEV。就大众而言,对SiC逆变器的需求将从2026年开始大幅度增长,达到130万台,并在2034年增加到690万台。

  现代汽车:现代汽车在2022年CEO投资者日研讨会上宣布,其计划到2030年每年销售187万辆BEV,并推出17款新的BEV车型。在2021年,现代汽车宣布了将BEV车型数量从2021年的8款增加到2025年的23款的计划。所有23款新的BEV车型将基于现代汽车的电动全球模块化平台(E-GMP),支持800V和400V充电。现代汽车已选择在其E-GMP平台中使用SiC技术。它选择了意法半导体的ACEPACK DRIVE SiC-MOSFET第三代功率模块,可提供更长的续航能力。意法半导体声称其ACEPACK DRIVE SiC-MOSFET为驱动逆变器提供了一种即插即用的解决方案,最高结温为175℃。ACEPACK DRIVE从2023年3月开始全面生产。

  沃尔沃:据称沃尔沃正在开发一个名为全球产品架构(GPA)的平台,该平台将基于800V架构。在2022年6月的新闻稿中,Polestar宣布,其计划于2024年推出的Polestar5电动汽车将基于800V架构,以及双电机全轮驱动动力总成。

  蔚来:2021年6月,中国大陆汽车厂商宣布,该公司已生产出第一批用于ET7车型的SiC电驱动系统的C原型。该公司称,SiC驱动系统将更加紧凑、高效,并且重量轻。

  Rivian:Rivian的专有800V架构包括一个集成式车载充电器、DC-DC转换器和DC-AC转换器,以及用于双电机和四电机配置的驱动装置。

  吉利:2021年,罗姆半导体和吉利宣布合作开发SiC功率器件。根据该合作伙伴关系,吉利将在其驱动逆变器和车载充电系统中使用罗姆的SiC功率器件,旨在延长其电动汽车的续航里程。

  梅赛德斯-奔驰:2022年,安森美宣布,其用于逆变器的SiC技术已被梅赛德斯-奔驰用于其全电动VISION EQXX电动汽车。

  大众:2023年1月,大众与onsemi建立战略合作伙伴关系,根据协议,onsemi将向大众提供SiC功率模块(EliteSiC功率模块)和技术,用于大众的下一代电动汽车。

  由于对SiC的需求将与对BEV的需求成正比,以及向800V架构的转移,大多数供应商正在研究SiC逆变器技术。2023年2月,博格华纳获得一份订单,向一家主流汽车厂商供应两种800V SiC逆变器,以用于该汽车厂商的BEV平台。一个250千瓦的模块将被用于乘用车和全轮驱动跨界多用途车,而另一个350千瓦的模块将用于该汽车厂商的高性能汽车。这些SiC逆变器将基于博格华纳的专利“Viper”SiC800V功率模块,并采用双面冷却技术。这些新的SiC逆变器将从2025年开始生产,每年40万台。

  Marelli在2022年展示了其全新的综合性800V SiC逆变器平台,确保了逆变器在尺寸、重量和效率方面的改善。此外,Marelli还内部开发了逆变器软件,该软件由位于逆变器外壳中的电子控制器(ECU)控制。

  2023年3月,电装宣布已开发出SiC逆变器,将用于即将上市的雷克萨斯RZ车型(该公司的首款BEV),作为BluE NexusCorporation开发的电驱动模块eAxle的一部分。

  据S&PGlobalMobility估计,到2034年,电装、特斯拉、伊顿、阿联酋航空、比亚迪、宝马和纬湃科技预计将成为SiC逆变器的主要供应商。到2034年,电装预计将供应超过1,200万台SiC逆变器。与此相似,博格华纳的SiC逆变器销量将从2023年的8万台增加到2034年的450万台,复合年增长率接近44.2%。

  比亚迪半导体部门于2022年6月推出一款1,200V1040A SiC功率模块,将用于其大功率新能源汽车(NEV)平台。该公司称,这款新型SiC功率模块可带来30%的功率提升,并采用双面烧结工艺,使连接层的热导率提高10倍,可靠性提高5倍。

  2022年,特斯拉生产了近204万台SiC逆变器,引领了SiC生产。然而,特斯拉在2023年3月宣布,该公司正致力于开发一种用于低成本电动汽车的动力总成,将减少75%的SiC逆变器使用。

  全球逆变器需求总量将从2023年的4,399万台增长到2034年的1.2亿台,复合年增长率为9.55%。目前,IGBT逆变器是全球所有类型电动汽车中普遍的使用的逆变器类型,其次是Si MOSFET。然而,随着对BEV需求的增加和向800V架构的转变,对SiC逆变器的需求可能会增加。到2034年,SiC和IGBT逆变器的市场占有率将分别达到44%和45%,几乎均分。

  按动力类型来看,到2034年,逆变器需求总量中BEV将占67%,其次是全混混动汽车,占26%。

  主要汽车地区对逆变器的需求与该地区生产的替代动力汽车的数量直接相关。大中华区在逆变器总体需求方面处于领头羊,并将在本预测所覆盖的年份里继续保持领先。

  2022年,大中华区共使用了1,250万台逆变器。截至2023年,大中华区的逆变器需求达到1,688万台,预计该需求将以9%的复合年增长率增长到4,350万台。逆变器需求的很大一部分将来自BEV,其次是全混混动汽车。2034年,BEV将占大中华区逆变器需求总量的68%。目前IGBT逆变器类型占大中华区逆变器需求的较大部分,但到2034年,随着BEV的增长,SiC逆变器将成为大中华区最受喜爱的逆变器类型。

  2022年,逆变器需求量为724万台。截至2023年,欧洲对逆变器的需求为1,020万台,并将增长到2,240万台,复合年增长率为7.4%。目前,欧洲市场上最受欢迎的逆变器类型是IGBT逆变器类型,市场占有率为61%,MOSFET逆变器类型为31%。IGBT逆变器需求由全混混动汽车驱动,占需求的37%。

  SiC逆变器类型需求低迷,2023年仅占欧洲逆变器总需求的8%。尽管如此,对SiC的需求将上升,到2034年,将占欧洲逆变器总需求的60%以上。欧洲逆变器需求量开始上涨将源于BEV需求增加,到2034年,BEV将占欧洲逆变器需求总量的89%。

  截至2023年,日本/韩国地区的逆变器需求为881万台,到2034年将增长到1,595万台。IGBT逆变器类型在日本/韩国地区需求中占很大比例,这种趋势将持续到2034年。IGBT逆变器类型的需求主要受到全混混动汽车需求量开始上涨的推动。2032年以前,全混混动汽车将主导日本/韩国的逆变器需求。从2033年起,BEV对逆变器的需求将超过全混混动汽车对逆变器的需求。到2034年,BEV将占日本/韩国逆变器需求总量的48%,全混混动汽车将占43%。2034年,SiC将占日本/韩国逆变器总需求的42%,IGBT将占46%。

  IGBT逆变器类型占北美逆变器需求的一大部分。截至2023年,对逆变器的需求为630万台,预计到2034年将达到2,500万台。

  与2023年的当前需求相比,预计到2028年,电机需求将增长14倍,到2034年增长36倍。2034年,永磁电机的市场占有率将继续接近79%,但其销量将增加到9,560万辆。鉴于对稀土供应的担忧,一些公司正努力开发使用稀土的电机,或尝试采用替代电机类型,例如感应电机和绕线转子同步电机。然而,由于缺乏任何商业上可行的技术,我们预计永磁电机将继续成为电动汽车行业的主流。

  随着对提高效率和延长续航里程的需求持续存在,汽车行业将见证大多数汽车厂商的电动汽车改用800V架构。由于SiC逆变器的开关效率高且损耗较小,需求将旺盛,并将被广泛采用。SiC逆变器的广泛采用将导致许多汽车厂商和供应商选择和半导体公司做垂直整合,以保障SiC的供应。

  基于2017年出售的收益而入围的十大CERM厂商中,Genesys是唯一专攻客户体验的供应商 北京,2018年9月19日——全球领先的全渠道客户体验和联络中心解决方案提供商Genesys® ( )在Gartner《2017 年客户体验与关系管理软件全球市场分析报告》中名列收入最高厂商前五名。Genesys认为,这一表现证明了其在CERM方面的突出实力,作为前五名供应商中唯一致力于客户体验的企业,Genesys的地位举足轻重。 Genesys的解决方案促进了企业的服务与销售和市场部门间的协作,加强对客户历程的整体把控。 Genesys首席执行官Paul Segre表示:“企业往往很难全面

  今年4月早一点的时候,福特宣布将脱手驾驶辅助系统命名为BlueCruise,并在2021年款福特F-150和2021年款福特野马Mach-E车型上推出。当时,福特宣布林肯将有自己版本的BlueCruise,不过,并未公布该版本的信息。据外国媒体报道,现在福特宣布林肯版BlueCruise被命名为ActiveGlide。 不同的名字,相同的技术 除了名字不同,ActiveGlide与BlueCruise几乎一模一样。跟BlueCruise一样,ActiveGlide也采用摄像头和雷达,能够让驾驶员在地图上标出的高速公路路段行驶时,将手从方向盘移开,而此类路段被称作脱手驾驶蓝区(Hands-Free Blue Zones),而福特车型的

  随着新能源的加快速度进行发展,以电力、氢动力、混合动力、天然气动力等驱动的新能源汽车逐渐登上舞台,为汽车行业加快速度进行发展迎来良机。伴随着新的能量应用,汽车底部即动力总成部分(燃油传递与动力输出)也相应地发生了巨大的变化。 传统内燃机的动力传输架构 作为传统内燃机油路架构(图1所示),燃油被储存在油箱(A)中,低压油泵(B)产生5~8bar的油压并用来传输燃油;油压缓冲器(C)及油路过滤器(D)对低压油路实现稳压及清洁燃油作用;处于位置(E)的油压调节阀将进一步对整个油路的油压来管理,以维持稳定的喷射压力;处于进气歧管处的喷油嘴在发动机控制单元(ECU)的控制下进行喷油量以及进气量的管理,能够准确的通过工况调节合理的空燃比和输出动力。 图

  发展——相应的动力传递结构演变 /

  近日,中国科学院苏州纳米技术与纳米仿生研究所张跃钢课题组自主研发设计了原位扫描/透射电镜电化学芯片,实现了其对 硫化锂(Li2S) 电极充电过程的实时观测;在充分理解Li2S充放电机理的基础上设计了高氮掺杂石墨烯负载硫化锂材料作为电池正极,并经过控制充电容量和电压,明显提升了 Li2S的容量利用率及循环寿命,相关成果发表在Advanced Energy Materials杂志上。     随着社会和科技的发展,人类对电化学储能技术的需求日益增加,新兴储能系统——锂硫电池具有理论容量高、成本低、环境友好等优点,备受国内外研究者的关注。而研发高容量锂硫电池正极材料,对推动新能源电动汽车、便携式电子设备等领域的发展至关重要。

  1、 引言 电力电子技术是研究电力半导体器件实现电能变换和控制的学科,它是一门电子、电力半导体器件和控制三者相互交叉而出现的新兴缘学科。它研究的内容十分普遍,最重要的包含电力半导体器件、磁性材料、电力电子电路、控制集成电路以及由其组成的电力变换装置。目前,电力电子学研究的主要方向是: (1) 电力半导体器件的设计、测试、模型分析、工艺及仿线) 电力开关变换器的电路拓扑、建模、仿线) 电力逆变技术及其在电气传动、电力系统等工业领域中的应用等。 电动汽车(EV)作为清洁、高效和可持续发展的交通工具,既对改善空气质量、保护自然环境具有重大意义,又对日益严重的石油包机提供了解决办法;同时

  应用综述 /

  岁月变幻,沧海桑田。从目前来看,特别难找到有哪个产业像 电动汽车 这样,在100年前就已经快速爆发,却又逐步衰落的产业,却在今天重新再回到大众的视野。     这就像凤凰涅槃,又像经历了百年的等待,电动汽车终于迎来传奇般的回归。而这一次,其中心地带正是中国。   随着全球绿色化进程的推进,众多国家纷纷将禁售燃油汽车的时间提上日程,并加大了新能源汽车的研发、布局与推广力度。   此外,随着电池成本不断下降,以及充电桩等基础设施的普及,全球电动汽车市场不断创下历史新高。   在此背景下,中国慢慢的变成了全球电动汽车最大的销售市场和引领者。   1.中国电动汽车保有量最高 据国际能源署(IEA)最新发布的《2018全球电动汽车展望》报告显示

  1.引言 图像传感器是传感技术中的一个重要分支,是PC机多媒体世界今后必不可少的外设,也是保安监控产业中的核心器件。在知识经济和信息社会已经到来的今天,它在我们的社会生活中会有更多的应用。 固体图像传感器分为电荷耦合器件(CCD)型、MOS型和CMOS型三大类,早期由于受集成电路设计和工艺水平的限制,MOS型摄像器件无法克服它的灵敏度低和抗干扰能力小的缺点,因而得不到广泛应用,随着电视技术的发展和集成电路制造工艺的迅速提高,当初MOS型摄像器件的缺点得到了某些特定的程度的克服。到了八十年代末,英国爱丁堡大学成功地试制出了世界第一块单片CMOS型图像传感器件,从而为实用化开通了道路。 CMOS型摄像器件是将图像传感部分

  ROHM的RGS系列是符合AEC-Q101标准、且具有1200V 和650V宽耐压范围的IGBT产品。该系列具有更低的传导损耗,有助于提高应用产品的效率并实现小型化,是电动压缩机的逆变器和高压加热器的更佳选择。 前言 与使用内燃机的传统汽车相比,电动汽车的能效要高得多,但这也带来一个问题:来自电机的废热不再足以满足车内的取暖需求。要想满足取暖需求,必须将电池中存储的部分电能转换为热能。为实现不依赖于工作时候的温度或电池电压的可调加热功率,在新一代高压加热器中使用了功率半导体,来控制从电池到加热元件的能量流。由加热元件加热冷媒,并通过热交换器将冷媒输送到车辆的空调系统中,最后由鼓风机将暖风输送到车内。参见图1原理图。 图1

  三合一电驱动系统效率测试

  用驱动电机系统可靠性试验方法

  驱动电机选配方法

  用轮毂电机研究热点及趋势分析

  直播回放: 节能减碳 - 用于光伏逆变器/储能系统的欧姆龙继电器‧开关‧连接器解决方案

  直播回放: 借助Sitara™ AM263x MCU 创造电气化的未来

  MPS电机研究院 让电机更听话的秘密! 第一站:电机应用知识大考!跟帖赢好礼~

  电源小课堂 从12V电池及供电网络优化的角度分析电动汽车E/E架构的趋势

  解锁【W5500-EVB-Pico】,探秘以太网底层,得捷电子Follow me第4期来袭!

  高阶智能驾驶“重高精地图”的方案,由于高精地图信息审核管理等约束而无法快速迭代推向用户,同时也受智能驾驶硬件以及开发成本的压力,所 ...

  感知算法升级是L2级向L 3级智能驾驶系统跨越的关键。与传统2D+CNN算法相比,BEV+ Transformer算法优势体现在: 1)感知输出信息精准 ...

  随着智能汽车的发展,用户对汽车的安全性、稳定性、智能化不断提出更新的要求。车载各项功能的实现都需要复杂的芯片组和算法的稳定支持,MC ...

  随着汽车智能化发展,车内通信带宽需求日渐增长,车载以太网慢慢的变成为车内骨干网络。为实现更彻底的域间功能解绑,提升信息处理效率,提升 ...

  汽车电子科技类产品的价格普遍比较贵,其中的根本原因之一就是使用了车规级的电子元件,但什么样的电子元件才是车规级的器器件呢?我们先来看看电 ...

  罗德与施瓦茨亮相 MWC2024:移动通信测试与测量解决方案激发连接潜力,实现创新赋能

  是德科技与英伟达在 2024 年世界移动通信大会上合作展示 6G 神经接收机设计流程

  英飞凌SLI37系列汽车安全控制器获得ISO/SAE 21434标准认证

  【边分享,边成长,11月有奖】EEWORLD优秀主题/回复第16期活动开始拉

  下载有礼:看“智””造“热”侦探 FLIR ETS320 红外热像仪如何纠错!

  站点相关:嵌入式处理器嵌入式操作系统开发相关FPGA/DSP总线与接口数据处理消费电子工业电子汽车电子其他技术存储技术综合资讯论坛电子百科